Very Long Baseline Neutrino Oscillations

Milind Diwan

Brookhaven national Laboratory

Annual DOE program review, April 2005

3 Generation oscillations

Difference in mass squares: $(m_2^2 - m_1^2)$

Solar : L~15000*km*

2-nu:
$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}$$

$$P(\nu_a \rightarrow \nu_b) = \sum_i |U_{ai}|^2 |U_{bi}|^2$$

3-nu:
$$+2Re(U_{a1}^*U_{b1}U_{a2}U_{b2}^* \times exp(-i\Delta m_{21}^2L/2E) +2Re(U_{a1}^*U_{b1}U_{a3}U_{b3}^* \times exp(-i\Delta m_{31}^2L/2E)$$

CP phase
$$^{+2Re(U_{a1}U_{b1}U_{a3}U_{b3}\times exp(-i\Delta m_{31}L/2E))}_{+2Re(U_{a2}^{*}U_{b2}U_{a3}U_{b3}^{*}\times exp(-i\Delta m_{32}^{2}L/2E))}$$

no matter effects

Oscillation nodes at $\pi/2, 3\pi/2, 5\pi/2, ... (\pi/2)$: $\Delta m^2 = 0.0025 eV^2$,

$$E = 1 GeV, L = 494 km$$
.

Neutrino Oscillations Results

$$\Delta m_{21}^2 = (8.0 \pm 0.3) 10^{-5} eV^2$$
$$\sin^2 2\theta_{12} = 0.86 \pm 0.04$$

$$\left| \Delta m_{32}^2 \right| = (2.5 \pm 0.3) 10^{-3} e V^2$$
 sign? $\sin^2 2\theta_{23} = 1.02 \pm 0.04$ degeneracy?

$$\sin^2 2\theta_{13} < 0.12$$
 (99% C.L.)
 $\delta_{CP} = ???$

Values from: A. Strumia & F Vissani hep-ph/0503246 - ifup-th/2005-06

Next Generation Experiments

- ightharpoonup increase sensitivity $\sin^2 2\theta_{13} \& \delta_{\rm CP}$ significantly
- > precision measurements of Δm_{32}^2 & $\sin^2 2\theta_{23}$
- > resolve mass hierarchy (sign of Δm_{32}^2)
- sensitive to new physics

The heart of the 3 generation picture needs an appearance experiment with L/E that includes effects from both mass differences. This implies baseline > 2000 km

- 28 GeV protons. I MW beam power. Horn focussed
- 500 kT water Cherenkov detector.
- baseline > 2500 km. WIPP, Henderson, Homestake
- We have proven by 3 years of work that this can be done.

Working group chronology

- December, 2001: Tom Kirk gave us a charge to form a working group.
- ~50 Members from Physics department, CAD, and outside universities.
 - Coordinators: W. Marciano (physics), M.Diwan(simulations), W.
 Weng(accelerator upgrade)
- BNL HENP PAC (2002)
- Internal AGS review (June 2004)
- HEPAP facilities plan(2003), Absolutely central (super-beam and large detector included in the the 20 yr outlook plan)
- APS neutrino study (2004)(proton driver recommendation)
- NESS workshop(Sep 2002), DUSEL SI(MVD is one of the working group leaders) and S2 workshops, 3 BNL/UCLA workshops(Dec 2003, May 2004, Feb 2005)

Working group written material

partial list

- W. J. Marciano, "Long baseline neutrino oscillations and leptonic CP violation," Nucl. Phys. Proc. Suppl. 138, 370 (2005).
- M. V. Diwan, "The case for a super neutrino beam," Heavy Quarks and Leptons Workshop 2004, San Juan, Puerto Rico, 1-5 Jun 2004. arXiv:hep-ex/0407047.
- J. Alessi, et al., "The AGS-based Super Neutrino Beam Facility, Conceptual Design Report," BNL-73210-2004-IR, 1 Oct. 2004.
- W. T. Weng et al., J. Phys. G 29, 1735 (2003).
- W. J. Marciano, "Extra long baseline neutrino oscillations and CP violation," BNL-HET-01-31, Aug 2001. 11pp. arXiv:hep-ph/0108181.
- M. V. Diwan et al., "Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP violating effects," Phys. Rev. D 68, 012002 (2003) [arXiv:hep-ph/0303081].
- + numerous conference proceeding and working group reports.

We are after the science and facilities absolutely central to the US HEP program: Neutrino super beam and a large capable underground detector.

Why Very Long Baseline?

observe multiple nodes in oscillation pattern

less dependent on flux normalization

neutrino travels larger distance through earth larger matter effects

flux ~ L⁻²: lower statistics but: CP asymmetry ~ L

sensitivity to δ_{CP} independent of distance! (Marciano hep-ph/0108181)

Why Broadband Beam?

observe multiple nodes extraction of oscillating signal from background.

larger energies
larger cross sections
less running time for
anti-neutrinos

Sensitive to different parameters in different energy regions:

AGS Conceptual Design Report

BNL-73210-3004-IR

October 8, 2004

BNL-73210-2004-IR

The AGS-Based Super Neutrino Beam Facility
Conceptual Design Report

The AGS-Based Super Neutrino Beam Facility

Conceptual Design Report

AGS upgrade+ new beam = \$273M + burdens

details in D.L.'s talks

8 October 2004

Sent to DOE Oct 2004

Contributors and Participants

Alessi, D. Barton, D. Beavis, S. Bellavia, I. Ben-Zvi, J. Brennan, M. Diwan, P. K. Feng, J. Gallardo, D. Gassner, R. Hahn, D. Hseuh, S.Kahn, H. Kirk, Y. Y. Lee, E. Lessard, D. Lowenstein, H. Ludewig, K. Mirabella, W. Marciano, I. Marneris, T. Nehring, C. Pearson, A. Pendzick, P. Pile, D. Raparia, T. Roser, A. Ruggiero, N. P. Samios, N. Simos, J. Sandberg, N. Tsoupas, J. Tuozzolo, B. Viren, J. Beebe-Wang, J. Wei, W. T. Weng, N. Williams, P. Yamin, K. C. Wu, A. Zaltsman, S. Y. Zhang, Wu Zhang

BNL-73210-2004-IR

Brookhaven National Laboratory Upton, NY 11973 October 8, 2004

http://raparia.sns.bnl.gov/nwg_ad/agsnbcdr1.pdf

AGS 1MW proton beam

Upgrade AGS (28 GeV protons)

intensity: 7.10¹³ → 9.10¹³ ppp

rep. rate: ~0.3Hz → 2.5Hz

- ramp time: ~1.2s → 0.2s
 repl. power supply, rf, ...
- 2) filling time: 0.6s → 1ms replace booster: extend warm linac 200 MeV new SC linac 1 GeV
- Work continues to goto 1.5 or 2 MW.
- Experimental work on 1 MW carbon-carbon target.

disappearance

neutrino running:

1MW beam 0.5Mt water Cerenkov det. 2540km distance 5e7s running time ~50000 tot CC events

determine $\Delta m_{_{32}}^2$ $\& \sin^2 2\theta_{23} \text{ to } 1\%$ systematics dominated

anti-neutrino running:

same as v but with 2MW beam

including anti-ν running: • CPT test possible

errors below 1% achievable

$v_{\rm e}$ Appearance

backgrounds:

- beam $v_{\rm e}$
- NC V

neutrino running:

measure $\sin^2 2\theta_{13}$ and $\delta_{\rm CP}$ for $\sin^2 2\theta_{13} > 0.01$ resolve mass hierarchy

include anti-neutrino run:

exclude $\sin^2 2\theta_{13} > 0.003$

if $\sin^2 2\theta_{13}$ too small $\rightarrow \delta_{\rm CP}$ measurement not possible observation $\nu_{\rm e}$ appearance possible through solar term

Status of physics work

- With neutrino and anti-neutrino running can resolve mass hierarchy to 10 sigma, measure CP violation, and look for new effects.
- Have examined more detailed issues regarding baseline. Optimization based on physics judgement. But longer baseline => better science.

M. Diwan, Proc. Heavy Quarks and Leptons, hep-ex/0407047

 GREAT PROGRESS ON DETECTOR BACKGROUNDS!

CP resolution

More than 10 sigma resolution of mass hierarchy after anti-neutrino running and excellent resolution on delta-CP.

Detector

- 500 kT fiducial mass for both proton decay and neutrino astro-physics and neutrino beam physics.
- ~10% energy resolution on quasielastic events.
- muon/electron separation at <1%
 Previous issues
 - 1,2,3 track event separation.
 - Showering NC event rejection at factor of ~20.
- Low threshold (~5 MeV) for solar and supernova physics.
- Time resolution ~few ns for pattern recognition and background rejection.

Water Cherenkov can satisfy these requirements Not magic. Performance is obtained by giving up large fraction of potential signal CC events; and using the kinematics of NC events.

Complete water Cherenkov detector simulations progress

 v_e CC for signal; all $v_{u,\tau,e}$ NC, v_e beam for background

■
$$\Delta m_{21}^2 = 7.3 \times 10^{-5} \text{ eV}^2$$
, $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$

Select single ring events and select electrons

analysis Perform of single electron pattern, likelihood cut retaining ~50% of signal.

Signal/backg = 700/2005

Signal/back = 321/169

C. Yanagisawa (Stony Brook), 3rd BNL/UCLA workshop http://www.physics.ucla.edu/hep/proton/proton2005.htm

Scientific Reach of Future Neutrino Oscillations Exps.

Parameter	T2K	T2HK	Reactor	Nova	Nova2	VLBNO .
Δm_{32}^2	✓	✓	-	✓	✓	✓
$\sin^2(2\theta_{23})$	✓	✓	-	✓	✓	✓
sin ² (2θ ₁₃) ^a	✓	✓	✓	✓	✓	✓
$\Delta m_{21}^{2} \sin(2\theta_{12})^{b}$	-	-	-	-	-	12%
sign of (Δm ₃₂ ²) ^c	Nova	-		T2K	T2K	yes
measure δ _{CP} d	-	Nova	-Combi	ned _	T2HK	±13°
N-decay improv.	x1	x20	measure	ement		x10
Detector (KTons)	50	1000	20	30	30	500
Beam Power (MW)	0.74	4.0	14000	0.65	2.0	1.0
Baseline (km)	295 e	295 ^e	1	810 ^e	810 e	2500
Detector Cost (\$M)	exists	~\$\$\$	20	165	+ ???	\$\$
Beam Cost (\$M) -	exists	\$\$	exists	\$	\$\$\$	400

^a detection of $v_{\mu} \rightarrow v_{e}$, upper limit on or determination of $\sin^{2}(2\theta_{13})$

e beam is 'off-axis' from 0-degree target direction

^b detection of $v_{\mu} \rightarrow v_{e}$ appearance, even if $\sin^{2}(2\theta_{13}) = 0$; determine θ_{23} angle ambiguity

 $^{^{\}rm c}$ detection of the matter enhancement effect over the entire δ_{CP} angle range

 $^{^{}m d}$ measure the CP-violation phase $\delta_{
m CP}$ in the lepton sector; Nova2 depends on T2HK

Comments on Neutrino Oscillations Experiments

- All parameters of neutrino oscillation can be measured in <u>one</u> experiment
 - a Very Long Baseline Neutrino Oscillation (VLBNO) at >2000 km
 - the cost of VLBNO is comparable to (or less than) competing proposals
 - the mass of the VLBNO target enables a powerful Nucleon Decay search
- Use of a broadband neutrino beam at very long distances is the key
 - -Oscillatory signal very important for extracting signal from background and measuring parameter without systematics.
- Focus on CP because The CP-violation parameter is the most difficult parameter to determine
 - matter effects interact with CP-violation effects
 - the CP-violation phase δ_{CP} has distinct effects over the full 360° range
- Off-axis beam method requires multiple distances and detectors to get same science.
 - each step in offaxis will require of order 10 Snomass years of running
- All measured oscillation parameters will be limited to ~1% precision by systematic errors except sin²(2θ₂₃)

R&D Request

- Resources to lower costs of the AGS upgrade and neutrino super beam.
- Must push I MW target studies to completion.
- Resources to push water Cherenkov simulations as well as start detector R&D.
- We have 4 university groups working closely with us. Need more.
- Support for visiting scientists, students needed.

Conclusions

- Powerful new method for neutrino CP violation study. Absolutely central part of the HEP facilities plan and the APS neutrino study plan.
- We have made great progress on many technical issues.
- Important work performed on detector background issue.
- Need encouragement, resources, and time to make a complete experimental proposal.
- Meanwhile, EXPECT A DETECTOR R&D PROPOSAL SOON.